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Searching for exotic particles in high-energy
physics with deep learning
P. Baldi1, P. Sadowski1 & D. Whiteson2

Collisions at high-energy particle colliders are a traditionally fruitful source of exotic particle

discoveries. Finding these rare particles requires solving difficult signal-versus-background

classification problems, hence machine-learning approaches are often used. Standard

approaches have relied on ‘shallow’ machine-learning models that have a limited capacity to

learn complex nonlinear functions of the inputs, and rely on a painstaking search through

manually constructed nonlinear features. Progress on this problem has slowed, as a variety of

techniques have shown equivalent performance. Recent advances in the field of deep learning

make it possible to learn more complex functions and better discriminate between signal and

background classes. Here, using benchmark data sets, we show that deep-learning methods

need no manually constructed inputs and yet improve the classification metric by as much as

8% over the best current approaches. This demonstrates that deep-learning approaches can

improve the power of collider searches for exotic particles.
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T
he field of high-energy physics is devoted to the study of
the elementary constituents of matter. By investigating the
structure of matter and the laws that govern its interac-

tions, this field strives to discover the fundamental properties of
the physical universe. The primary tools of experimental high-
energy physicists are modern accelerators, which collide protons
and/or antiprotons to create exotic particles that occur only at
extremely high-energy densities. Observing these particles and
measuring their properties may yield critical insights about
the very nature of matter1. Such discoveries require powerful
statistical methods, and machine-learning tools have a critical
role. Given the limited quantity and expensive nature of the data,
improvements in analytical tools directly boost particle discovery
potential.

To discover a new particle, physicists must isolate a subspace of
their high-dimensional data in which the hypothesis of a new
particle or force gives a significantly different prediction than the
null hypothesis, allowing for an effective statistical test. For this
reason, the critical element of the search for new particles and
forces in high-energy physics is the computation of the relative
likelihood, the ratio of the sample likelihood functions in the two
considered hypotheses, shown by Neyman and Pearson2 to be the
optimal discriminating quantity. Often this relative likelihood
function cannot be expressed analytically, so simulated collision
data generated with Monte Carlo methods are used as a basis
for approximation of the likelihood function. The high
dimensionality of data, referred to as the feature space, makes it
intractable to generate enough simulated collisions to describe the
relative likelihood in the full feature space, and machine-learning
tools are used for dimensionality reduction. Machine-learning
classifiers such as neural networks provide a powerful way to
solve this learning problem.

The relative likelihood function is a complicated function in a
high-dimensional space. Although any function can theoretically
be represented by a ‘shallow’ classifier, such as a neural network
with a single hidden layer3, an intractable number of hidden units
may be required. Circuit complexity theory tells us that deep
neural networks (DN) have the potential to compute complex
functions much more efficiently (fewer hidden units), but in
practice they are notoriously difficult to train due to the vanishing
gradient problem4,5; the adjustments to the weights in the early
layers of a DN rapidly approach zero during training. A common
approach is to combine shallow classifiers with high-level features
that are derived manually from the raw features. These are
generally nonlinear functions of the input features that capture
physical insights about the data. Although helpful, this approach
is labour-intensive and not necessarily optimal; a robust machine-
learning method would obviate the need for this additional step
and capture all of the available classification power directly from
the raw data.

Recent successes in deep learning—for example, neural
networks with multiple hidden layers—have come from alleviat-
ing the gradient diffusion problem by a combination of factors,
including: (1) speeding up the stochastic gradient descent
algorithm with graphics processors; (2) using much larger
training sets; (3) using new learning algorithms, including
randomized algorithms such as dropout6,7; and (4) pre-training
the initial layers of the network with unsupervised learning
methods such as autoencoders8,9. This second approach attempts
to learn a useful layered representation of the data without having
to backpropagate through a DN; standard gradient descent is only
used at the end to fine-tune the network. With these methods, it
is becoming common to train DNs of five or more layers. These
advances in deep learning could have a significant impact on
applications in high-energy physics. Construction and operation
of the particle accelerators is extremely expensive, so any

additional classification power extracted from the collision data
is very valuable.

In this paper, we show that the current techniques used in
high-energy physics fail to capture all of the available informa-
tion, even when boosted by manually constructed physics-
inspired features. This effectively reduces the power of the
collider to discover new particles. We demonstrate that recent
developments in deep-learning tools can overcome these failings,
providing significant boosts even without manual assistance.

Results
Particle collisions. The vast majority of particle collisions do not
produce exotic particles. For example, though the Large Hadron
Collider (LHC) produces approximately 1011 collisions per hour,
approximately 300 of these collisions result in a Higgs boson, on
average. Therefore, good data analysis depends on distinguishing
collisions which produce particles of interest (signal) from those
producing other particles (background).

Even when interesting particles are produced, detecting them
poses considerable challenges. They are too small to be directly
observed and decay almost immediately into other particles.
Though new particles cannot be directly observed, the lighter
stable particles to which they decay, called decay products, can be
observed. Multiple layers of detectors surround the point of
collision for this purpose. As each decay product pass through
these detectors, it interacts with them in a way that allows its
direction and momentum to be measured.

Observable decay products include electrically-charged leptons
(electrons or muons, denoted c), and particle jets (collimated
streams of particles originating from quarks or gluons, denoted j).
In the case of jets we attempt to distinguish between jets from
heavy quarks (b) and jets from gluons or low-mass quarks; jets
consistent with b-quarks receive a b-quark tag. For each object,
the momentum is determined by three measurements: the
momentum transverse to the beam direction (pT), and two
angles, y (polar) and f (azimuthal). For convenience, at hadron
colliders, such as Tevatron and LHC, the pseudorapidity, defined
as Z¼ � ln(tan(y/2)) is used instead of the polar angle y. Finally,
an important quantity is the amount of momentum carried away
by the invisible particles. This cannot be directly measured, but
can be inferred in the plane transverse to the beam by requiring
conservation of momentum. The initial state has zero momentum
transverse to the beam axis, therefore any imbalance of transverse
momentum (denoted T) in the final state must be due to
production of invisible particles such as neutrinos (n) or exotic
particles. The momentum imbalance in the longitudinal direction
along the beam cannot be measured at hadron colliders, as the
initial state momentum of the quarks is not known.

Benchmark case for Higgs bosons. The first benchmark classi-
fication task is to distinguish between a signal process where new
theoretical Higgs bosons (HIGGS) are produced, and a back-
ground process with the identical decay products but distinct
kinematic features. This benchmark task was recently considered
by experiments at the LHC10 and the Tevatron colliders11.

The signal process is the fusion of two gluons into a heavy
electrically neutral Higgs boson (gg-H0), which decays to a
heavy electrically-charged Higgs bosons (H �) and a W boson.
The H � boson subsequently decays to a second W boson and the
light Higgs boson, h0, which has recently been observed by the
ATLAS12 and CMS13 experiments. The light Higgs boson decays
predominantly to a pair of bottom quarks, giving the process:

gg ! H0 ! W �H � ! W �W � h0 ! W �W � b�b; ð1Þ
which leads to W �W � bb, see Fig. 1. The background process,
which mimics W �W � bb without the Higgs boson intermediate
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Note that the leptonic W boson is reconstructed by combining
the lepton with the neutrino, whose transverse momentum is
deduced from the imbalance of momentum in the final state
objects and whose rapidity is set to give mcn closest to
mW¼ 80.4GeV.

Whereas in the case of the tt background we expect that:

� W-cn gives a peak in mcn at mW,
� W-jj gives a peak in mjj at mW,
� t-Wb gives a peak in mjcn and mjbb at mt.

See Fig. 3 for distributions of these high-level features for both
signal and background processes. Clearly these contain more
discrimination power than the low-level features.

We have published a data set containing 11 million simulated
collision events for benchmarking machine-learning classification
algorithms on this task, which can be found in the UCI Machine
Learning Repository at archive.ics.uci.edu/ml/datasets/HIGGS.

Benchmark case for supersymmetry particles. The second
benchmark classification task is to distinguish between a process
where new supersymmetric particles (SUSY) are produced,
leading to a final state, in which some particles are detectable
and others are invisible to the experimental apparatus, and a
background process with the same detectable particles but fewer
invisible particles and distinct kinematic features. This bench-
mark problem is currently of great interest to the field of high-
energy physics, and there is a vigorous effort in the literature17–20

to build high-level features which can aid in the classification task.
The signal process is the production of electrically-charged

supersymmetric particles (w�), which decay to W bosons and an
electrically neutral supersymmetric particle w0, which is invisible
to the detector. The W bosons decay to charged leptons l and
invisible neutrinos n, see Fig. 4. The final state in the detector is
therefore two charged leptons (cc) and missing momentum
carried off by the invisible particles (w0w0nn). The background
process is the production of pairs of W bosons, which decay to
charged leptons l and invisible neutrinos n, see Fig. 4. The visible
portion of the signal and background final states both contain two
leptons (cc) and large amounts of missing momentum due to the
invisible particles. The classification task requires distinguishing
between these two processes using the measurements of the
charged lepton momenta and the missing transverse momentum.

As above, simulated events are generated with the MadGraph
(ref. 14) event generator assuming 8 TeV collisions of protons as
at the latest run of the Large Hadron Collider, with showering
and hadronization performed by PYTHIA15 and detector
response simulated by DELPHES16. The masses are set to mw� ¼
200GeV and mw0 ¼ 100GeV.

We focus on the fully leptonic decay mode, in which both W
bosons decay to charged leptons and neutrinos, cncn. We
consider events which satisfy the requirements:

� Exactly two electrons or muons, each with pT420GeV and
|Z|o2.5;

� at least 20GeV of missing transverse momentum.

As above, the basic detector response is used to measure the
momentum of each visible particle, in this case the charged
leptons. In addition, there may be particle jets induced by
radiative processes. A critical quantity is the missing transverse
momentum, T. Figure 5 gives distributions of low-level features
for signal and background processes.

The search for supersymmetric particles is a central piece of the
scientific mission of the Large Hadron Collider. The strategy we

applied to the Higgs boson benchmark, of reconstructing the
invariant mass of the intermediate state, is not feasible here, as
there is too much information carried away by the escaping
neutrinos (two neutrinos in this case, compared with one for the
Higgs case). Instead, a great deal of intellectual energy has
been spent in attempting to devise features that give
additional classification power. These include high-level features
such as:

� Axial T: missing transverse energy along the vector defined by
the charged leptons,
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Figure 3 | High-level input features for Higgs benchmark. Distributions in

simulation of invariant mass calculations in ‘njjb�b events for simulated

signal (black) and background (red) events.
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� stransverse mass MT2: estimating the mass of particles
produced in pairs and decaying semi-invisibly17,18,

� T
Rel: T if DfZp/2, T sin(Df) if Dfop/2, where Df is the

minimum angle between T and a jet or lepton,
� razor quantities b,R and MR (ref. 19),
� super-razor quantities bRþ 1, cos(yRþ 1), DfR

b, MR
D, M

T
R , and

ffiffiffiffi

ŝR
p

(ref. 20).

See Fig. 6 for distributions of these high-level features for both
signal and background processes.

A data set containing five million simulated collision events is
available for download at archive.ics.uci.edu/ml/datasets/SUSY.

Current approach. Standard techniques in high-energy physics
data analyses include feed-forward neural networks with a single
hidden layer and boosted decision trees. We use the widely-used
TMVA package21, which provides a standardized implementation
of common multivariate learning techniques and an excellent
performance baseline.

Deep learning. We explored the use of DNs as a practical tool for
applications in high-energy physics. Hyper-parameters were
chosen using a subset of the HIGGS data consisting of 2.6 million
training examples and 100,000 validation examples. Due to
computational costs, this optimization was not thorough, but
included combinations of the pre-training methods, network
architectures, initial learning rates and regularization methods
shown in Supplementary Table 3. We selected a five-layer neural
network with 300 hidden units in each layer, a learning rate of
0.05, and a weight decay coefficient of 1� 10� 5. Pre-training,
extra hidden units and additional hidden layers significantly
increased training time without noticeably increasing perfor-
mance. To facilitate comparison, shallow neural networks were
trained with the same hyper-parameters and the same number of

units per hidden layer. Additional training details are provided in
the Methods section below.

The hyper-parameter optimization was performed using the
full set of HIGGS features. To investigate whether the neural
networks were able to learn the discriminative information
contained in the high-level features, we trained separate classifiers
for each of the three feature sets described above: low-level, high-
level and combined feature sets. For the SUSY benchmark, the
networks were trained with the same hyper-parameters chosen
for the HIGGS, as the data sets have similar characteristics and
the hyper-parameter search is computationally expensive.

Performance. Classifiers were tested on 500,000 simulated
examples generated from the same Monte Carlo procedures as
the training sets. We produced receiver operating characteristic
curves to illustrate the performance of the classifiers. Our primary
metric for comparison is the area under the receiver operating
characteristic curve (AUC), with larger AUC values indicating
higher classification accuracy across a range of threshold choices.

This metric is insightful, as it is directly connected to
classification accuracy, which is the quantity optimized for in
training. In practice, physicists may be interested in other metrics,
such as signal efficiency at some fixed background rejection or
discovery significance as calculated by P-value in the null
hypothesis. We choose AUC as it is a standard in machine
learning, and is closely correlated with the other metrics.
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Figure 5 | Low-level input features for SUSY benchmark. Distribution of
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In addition, we calculate discovery significance—the standard
metric in high-energy physics—to demonstrate that small
increases in AUC can represent significant enhancement in
discovery significance.

Note, however, that in some applications the determining
factor in the sensitivity to new exotic particles is determined not

only by the discriminating power of the selection, but by the
uncertainties in the background model itself. Some portions of
the background model may be better understood than others,
so that some simulated background collisions have larger
associated systematic uncertainties than other collisions. This
can transform the problem into one of reinforcement learning,
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background (red) benchmark processes.
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units did very little to increase performance over a shallow
network with only 30,001 parameters. Supplementary Table 5
compares the performance of the best shallow networks of each
size with DNs of varying depth.

Although the primary advantage of DNs is their ability to
automatically learn high-level features from the data, one can
imagine facilitating this process by pre-training a neural network
to compute a particular set of high-level features. As a proof of
concept, we demonstrate how DNs can be trained to compute the
high-level HIGGS features with a high degree of accuracy
(Supplementary Table 6). Note that such a network could be
used as a module within a larger neural network classifier.

Discussion
It is widely accepted in experimental high-energy physics that
machine-learning techniques can provide powerful boosts to
searches for exotic particles. Until now, physicists have reluctantly
accepted the limitations of the shallow networks employed to
date; in an attempt to circumvent these limitations, physicists

manually construct helpful nonlinear feature combinations to
guide the shallow networks.

Our analysis shows that recent advances in deep-learning
techniques may lift these limitations by automatically discovering
powerful nonlinear feature combinations and providing better
discrimination power than current classifiers—even when aided
by manually constructed features. This appears to be the first such
demonstration in a semi-realistic case.

We suspect that the novel environment of high-energy physics,
with high volumes of relatively low-dimensional data containing
rare signals hiding under enormous backgrounds, can inspire new
developments in machine-learning tools. Beyond these simple
benchmarks, deep-learning methods may be able to tackle
thornier problems with multiple backgrounds, or lower-level
tasks such as identifying the decay products from the high-
dimensional raw detector output.

Methods
Neural network training. In training the neural networks, the following hyper-
parameters were predetermined without optimization. Hidden units all used the
tanh activation function. Weights were initialized from a normal distribution with
zero mean and standard deviation 0.1 in the first layer, 0.001 in the output layer
and 0.05 in all other hidden layers. Gradient computations were made on mini-
batches of size 100. A momentum term increased linearly over the first 200 epochs
from 0.9–0.99, at which point it remained constant. The learning rate decayed by a
factor of 1.0000002 every batch update until it reached a minimum of 10� 6.
Training ended when the momentum had reached its maximum value and the
minimum error on the validation set (500,000 examples) had not decreased by
more than a factor of 0.00001 over 10 epochs. This early stopping prevented
overfitting and resulted in each neural network being trained for 200–1,000 epochs.

Autoencoder pre-training was performed by training a stack of single-hidden-
layer autoencoder networks as in ref. 9, then fine-tuning the full network using the
class labels. Each autoencoder in the stack used tanh hidden units and linear
outputs, and was trained with the same initialization scheme, learning algorithm
and stopping parameters as in the fine-tuning stage. When training with dropout,
we increased the learning rate decay factor to 1.0000003, and only ended training
when the momentum had reached its maximum value and the error on the
validation set had not decreased for 40 epochs.

Data sets. The data sets were nearly balanced, with 53% positive examples in the
HIGGS data set and 46% positive examples in the SUSY data set. Input features
were standardized over the entire training/test set with mean 0 and s.d. 1, except
for those features with values strictly 40—these we scaled so that the mean
value was 1.

Computation. Computations were performed using machines with 16 Intel Xeon
cores, an NVIDIA Tesla C2070 graphics processor and 64 GB memory. All neural
networks were trained using the GPU-accelerated Theano and Pylearn2 software
libraries24,25. Our code is available at https://github.com/uci-igb/higgs-susy.
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Table 2 | Performance comparison for the SUSY benchmark.

Technique Low-level High-level Complete

AUC
BDT 0.850 (0.003) 0.835 (0.003) 0.863 (0.003)
NN 0.867 (0.002) 0.863 (0.001) 0.875 (o0.001)
NNdropout 0.856 (o0.001) 0.859 (o0.001) 0.873 (o0.001)
DN 0.872 (0.001) 0.865 (0.001) 0.876 (o0.001)
DNdropout 0.876 (o0.001) 0.869 (o0.001) 0.879 (o0.001)

Discovery significance
NN 6.5s 6.2s 6.9s
DN 7.5s 7.3s 7.6s

BDT, boosted decision tree; DN, deep neural network; NN, shallow neural network; SUSY,
supersymmetry particle.
Each model was trained five times with different weight initializations. The mean area under the
curve (AUC) is shown with s.d. in parentheses as well as the expected significance of a
discovery (in units of Gaussian s) for 100 signal events and 1,000±50 background events.
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